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Compressibility effects in
a turbulent annular mixing layer.
Part 2. Mixing of a passive scalar
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The mixing of fuel and oxidizer in a mixing layer between high-speed streams is
important in many applications, especially air-breathing propulsion systems. The
details of this process in a turbulent annular mixing layer are studied with direct
numerical simulation. Convective Mach numbers of the simulations range from
Mc = 0.1 to Mc = 1.8. Visualizations of the scalar field show that at low Mach
numbers large intrusions of nearly pure ambient or core fluid span the mixing region,
whereas at higher Mach numbers these intrusions are suppressed. Increasing the Mach
number is found to change the mixture fraction probability density function from
non-marching to marching and the mixing efficiency from 0.5 at Mc = 0.1 to 0.67 at
Mc = 1.5. Scalar concentration fluctuations and the axial velocity fluctuations become
highly correlated as the Mach number increases and a suppressed role of pressure in
the axial momentum equation is found to be responsible for this. Anisotropy of scalar
flux increases with Mc, and is explained via the suppression of transverse turbulence
lengthscale.

1. Introduction
The process by which reactants, once entrained into a turbulent mixing layer, are

mixed at a molecular level by diffusive processes is critical to several technologies.
There are essentially three steps which lead to the creation of reaction products in
such a flow: entrainment of fuel and oxidizer into the growing mixing layer, the
mixing of fuel and oxidizer at the molecular level, and the chemical reaction. These
steps are discussed by Dimotakis (1991) who argues that since each step occurs
at subsequent Lagrangian times, the product formation rate, δP/t, depends on three
separate factors. Here, we adapt his formula for spatially growing layers to the present
case of a temporally growing layer,

δP

t
=
δξ

t
× δM

δξ
× δP

δM
, (1.1)

where t is time. δξ is a concentration thickness, defined as the 99% scalar thickness,
and thus δξ/t is essentially the growth of the layer. The growth of the mixing layer
is the subject of a companion paper (Freund, Lele & Moin 2000) which examines
how compressibility affects the growth rate. The fraction of fluid that is mixed at
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the molecular level is δM/δξ , where δM is a thickness based upon the amount of
mixed fluid. Its precise definition is given in § 4.5. The ratio δM/δξ is called the mixing
efficiency and is a focus of study in this paper. The final factor in (1.1) is the fraction
of molecularly mixed fluid which has chemically reacted and δP is a product thickness.
The present simulations do not include chemical reactions, and we can only estimate
δP using an infinitely fast reaction rate model.

There have been several attempts to quantitatively measure the mixing of a passive
scalar in compressible mixing layers. To make accurate measurements of mixedness,
the smallest scale of concentration fluctuations in the flow must be resolved so that
molecularly mixed fluid is distinguished from that which has merely been ‘stirred’.
Fluid stirred to very small scales, but not molecularly mixed, is erroneously interpreted
as being molecularly mixed if the measuring technique has insufficient resolution.

The required resolution of scalar concentration measurements is set by the Batchelor
scale and, in experiments, this is typically estimated with λB ∝ Sc−0.5δξRe

−0.75
δξ

. Highly
resolved measurements have suggested that the constant of proportionality, for pur-
poses of differentiating mixed and stirred fluid, is around 25 (Dowling 1988; Dahm
& Dimotakis 1990). Of course, this value is only a guideline and the influence of the
molecular diffusivity increases continuously from a negligible level at large inviscid
scales to dominant at lengthscales λBo ≈ Sc−0.5δξRe

−0.75
δξ

. Taking the proportionality
constant to be 25 implies that measurement volumes of size λB or smaller have
negligible error owing to under-resolution of small scales.

The necessary resolutions of experiments with a measurement dimension L are
generally quantified in terms of λBo; L/λBo values for many experiments are listed by
Karasso & Mungal (1996) and Clemens & Mungal (1995). These are typically 10–100
times too under-resolved and, at present, it is very difficult to make measurements
with sufficient resolution owing to camera limitations and, even more restrictive,
laser sheet thickness. Therefore, in most cases, experimenters must infer mixedness
from product formation or fluorescence quenching measurements. Such measurements
are insensitive to volume averaging owing to under-resolution (Koochesfahani &
Dimotakis 1986; Karasso & Mungal 1996; Clemens & Paul 1995; Island 1997)
and are able to provide mixing-efficiency results. However, they cannot provide full
information about the mixing process such as the probability density function of
concentration fluctuations across the layer. An experiment or simulation which has
adequate resolution to determine scalar concentrations unambiguously may provide
such information without difficulty.

Here, we review only studies that use resolution-independent methods. A primary
motivation for these experiments has been to determine the effect of Reynolds
number and Mach number upon the mixing efficiency. In incompressible gaseous free
shear flow, the mixing efficiency has been measured to be 0.49 (Frieler & Dimotakis
1988). That is, about half of the fluid in the mixing layer is ‘pure’, being from one
free stream or the other, while the other half has experienced molecular mixing
between the two. Hall, Dimotakis & Rosemann (1991) used a resolution-independent
H2–F2–NO chemical reaction to measure mixing efficiency in a compressible shear
layer and found that it decreased to 0.31 at Mc = 0.92. Clemens & Paul (1995) used
the rapid quenching of NO fluorescence by O2 to measure mixing efficiency in the
initial mixing layer of a round jet and found that it increased slightly with increasing
Mach number: from 0.45 at Mc = 0.35 to 0.48 at Mc = 0.82. However, their data, if
extrapolated to the incompressible limit, do not appear to match the observed 0.49
value of Frieler & Dimotakis (1988). They cite Reynolds-number effects as a possible
cause for the discrepancy. Though their method involves no chemical reaction, the
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technique has been named ‘cold chemistry’ because it mimics an extremely fast
chemical reaction with zero heat release. Island (1997) performed extensive plane
mixing-layer measurements with the same technique and concluded that mixing
efficiency increases slightly with both compressibility and Reynolds number.

There are essentially two distinct approaches to modelling mixing processes in
turbulent shear flows. There are those who believe that gradient diffusion can accu-
rately model the average mixing process (see Bilger 1989) and those who do not (e.g.
Broadwell & Breidenthal 1982; Broadwell & Mungal 1991; Dimotakis 1991). The
standard method for the first approach, gradient diffusion modelling, is to calculate an
eddy viscosity from a k–ε turbulence model and then use a turbulent Prandtl number
(often PrT ≈ 0.7) to calculate scalar transport (see discussion and references in Bilger
1989). This method is used because it is simple and can give acceptable answers, but,
as Corrsin (1974) points out, unless the turbulent scales are significantly smaller than
the scales over which the mean flow varies, this technique does not have a strong
theoretical basis. Those who prefer the second approach point to the existence of
large-flow structures as violating the criterion discussed by Corrsin, and experimental
evidence suggests that fluid elements are entrained and moved unmixed through the
layer by large structures in a manner not consistent with a diffusive processes. They
propose models based on large-scale entrainment of fluid into the layer and incorp-
orate a hierarchy of concentration scales to describe the mixing process (Broadwell
& Breidenthal 1982; Broadwell & Mungal 1991; Dimotakis 1991).

The inclusion of compressibility effects into models of either type has been hindered
by uncertainty in the underlying physical processes. As discussed in the review of
experimental work above, it is beginning to appear that compressibility has little
effect upon the mixing efficiency. However, the large structural changes in the mixing
layer, as the convective Mach number increases, have definite implications for the
extension of the large-structure-based mixing models.

The goal of the present work is to study compressibility effects on the mixing
process, and, in particular to examine Mach number trends under otherwise the same
flow conditions. We briefly document the flow and the direct numerical simulation
methods used to study it in § 2. The resolution of the scalar field is addressed in § 3.
Simulation results are presented and discussed in § 4 and conclusions are reiterated
in § 5.

2. Preliminaries
Many of the details of the flow we consider, the governing equations, and the

simulation techniques are outlined in Part 1 (Freund et al. 2000) and are given in full
detail in (Freund et al. 1997). The flow is a streamwise periodic annular mixing layer
which corresponds to the early development of a jet. The initial mean flow had a ‘top
hat’ like velocity profile specified with a hyperbolic tangent function and the initial
momentum thickness was δm ≈ 0.08ro, where ro is the initial shear-layer radius (or
the jet radius). The momentum thickness in this geometry is defined

δm =

∫ ∞
0

ρ̄ṽx

ρjUj

(
1− ṽx

Uj

)
r dr. (2.1)

The turbulence was initialized with velocity perturbations of random phase and
prescribed spectrum. The amplitude of the initial fluctuations was such that

(v′xv′x + v′rv′r + v′θv′θ)
1/2
max = 0.05Ujo . (2.2)
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The compressible Navier–Stokes equations were solved numerically using sixth-order
compact finite-difference and spectral methods to approximate spatial derivatives
for all terms and fourth-order Runge–Kutta time advancement. The computational
domain was cylindrical and extended to 21ro in the axial direction and 3.5ro in the
radial direction. At r = 3.5ro, non-reflecting characteristic boundary conditions were
applied. The mesh had 448 × 146 × 192 points in the axial, radial and azimuthal
directions.

Nine cases were simulated at nearly the same flow conditions, with the exception of
the centreline Mach number which varied from Mj = 0.2 to Mj = 3.5. The subscript
()j indicates a centreline value. In this study, we focus on the point of flow development
when the momentum thickness was δm = 0.2ro, which is before the potential core
closes. Choosing such a point preserves geometrical similarity between the different
cases and this choice is discussed in more detail by Freund et al. (1997, 1999) along
with detailed analysis of the turbulence development. The convective Mach number
is typically used to quantify compressibility and ranged from Mc = 0.1 to Mc = 1.8.
The cases at Mc = 0.2 and Mc = 0.99 were simulated with 4 and 10 independent
realizations, respectively, to increase the sample size with ensemble averaging. In all
cases, the Reynolds number was Re = ρjUjro/µj ≈ 2300 and the temperature ratio
was Tj/T∞ = 1.12. The Crocco–Busemann relation was used to prescribe the initial
temperature profile and the initial pressure was uniform.

The mass, momentum and energy equations in cylindrical coordinates are discussed
in Freund et al. (1997, 1999) and the reader is referred there for details. An advection–
diffusion equation was solved simultaneously with the flow equations:

∂

∂t
(ρξ) +

∂

∂x
(ρξvx) +

1

r

∂

∂r
(rρξvr) +

1

r

∂

∂θ
(ρξvθ) = −∂Gx

∂x
− 1

r

∂rGr

∂r
− 1

r

∂Gθ

∂θ
, (2.3)

where ξ represents a non-dimensional scalar concentration and G is a vector of the
diffusive fluxes calculated with Fick’s law. The Schmidt number was unity in all
the simulations (Sc = 1). The scalar concentration was normalized in terms of the
dimensional centreline and ambient values, ξj and ξ∞, as

ξ =
ξ∗ − ξ∞
ξj − ξ∞ , (2.4)

where ξ∗ is the ‘un-normalized’ concentration. Thus, the scalar concentration and
mixture fraction are the same, and these terms are used interchangeably throughout
this paper. The initial condition for the scalar concentration was

ξ(r) =
ū(r)

Ujo

=
1

2

[
1− tanh

[
1

4b

(
r

ro
− ro

r

)]]
, (2.5)

where b is a thickness parameter equal to 0.08 in all cases.

3. Resolution of the scalar field
To estimate the ‘best case’ resolution of the present simulations in a manner that

can be compared with experiments, we calculate L/λBo values using the mesh spacing
as the measurement length, L. Worst-case values in the three coordinate directions
are

∆x

λBo
= 17,

∆r

λBo
= 10,

r∆θ

λBo
= 21, (3.1)
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and are based on Reδξ ≈ 3900 and the 99% scalar-layer thickness δξ = 1.7ro which
corresponds to momentum thickness δm = 0.2ro.

However, we are not at liberty, as experimentalists are, to assume that the simulated
flow is correct, even if the grid spacing has this resolution. It is conceivable that scales
smaller than in (3.1) have some influence on the flow field which is not captured.
Fortunately, more precise measures of the resolution are available by calculating the
dissipating scales and by examining scalar concentration and dissipation spectra.

For Sc = 1, the spectra of both kinetic energy and scalar fluctuations fall off
sharply near the Kolmogorov scale, λK = (ν2/ε)1/4 (Batchelor 1957), where ν is the
kinematic viscosity and ε is the dissipation rate of turbulent kinetic energy. We use ε
to calculate values for the Batchelor scale (λB = λK for Sc = 1) in order to provide a
more direct measure of the resolution. Of course, ε also depends upon the resolution
and therefore can also be underresolved. However, calculating ε using only every
other mesh point changed its value by less than 10% and we concluded that it is
sufficiently accurate. The worst case for ∆x/λB varied from a value of 3.1 at Mc = 0.2
to 2.4 at Mc = 1.80, the worst case for r∆θ/λB was approximately 2.3 for all cases,
and the worst case for ∆r/λB varied from 1.1 to 0.7 with increasing Mc.

Perhaps the best way of quantifying the scalar resolution is by simply examining
spectra of ξ′ and the scalar dissipation. Spectra for the Mc = 0.21, 0.99, and 1.80 cases,
which are typical of the low-, middle-, and high-speed flows, respectively, are plotted
in figure 1. The Mc = 0.21 case was selected over the Mc = 0.1 case, because it had 4
realizations available for ensemble averaging. Ensemble averaging was also used for
the Mc = 0.99 case, but only one realization was available for the Mc = 1.80 case.
Owing to the well-known limitations of direct numerical simulations, the Reynolds
number (as well as ReSc) must necessarily be low, and this manifests itself in very
limited or non-existent ‘inertial’ ranges. Similarly, short inertial ranges are apparent
in the low-Reynolds-number experimental data of Dowling & Dimotakis (1990) who
examined the dissipation portion of the spectrum in a fully developed jet. All the axial
one-dimensional spectra (figure 1a) have a short region of slope − 5

3
, and at the end

of this region, on the high wavenumber side, the onset of significant diffusive effects
can be observed. For the azimuthal spectra (figure 1b), only the Mc = 0.21 case has
a region of − 5

3
slope. In all cases, the spectra drop by over two orders of magnitude

after molecular diffusion effects become evident. The very highest wavenumbers in the
simulations show anomalous behaviour, but the energy is so low at this wavenumber
that the influence on the mixing data is negligible. Minor under-resolution and the
modified wavenumber of the sixth-order Padé scheme may be responsible for high-
wavenumber behaviour of the x-spectra. The ‘up-turn’ at the high-wavenumber end
of the θ-spectra has also been observed by Moin et al. (1991) and was attributed to
aliasing errors. The flat region in the high-wavenumber end of the Mc = 1.80 axial
spectrum is believed to be due to poor resolution of eddy shocklets. These occupy a
very small portion of the flow volume and are not dynamically significant (Freund
et al. 2000). We also note that the suspicious flat region has 104 times lower ‘energy’
content than the highest portion, and therefore is not likely to degrade the overall
solution.

As a final measure of the scalar field resolution, we examine scalar dissipation
spectra. Each term in the scalar dissipation,

εξ = G′x
∂ξ′

∂x
+ G′r

∂ξ′

∂r
+ G′θ

1

r

∂ξ′

∂θ
, (3.2)

is sensitive to the resolution of the scalar field in the direction in which the derivatives
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Figure 1. One-dimensional (a) axial and (b) azimuthal spectra of ξ′ at r = ro and δm = 0.2ro. The
numbers indicate the convective Mach numbers of the different cases. The straight lines have slope
− 5

3
and the Mc = 0.99 and Mc = 1.80 curves have been divided by 10 and 100, respectively.

are taken. If we assume constant fluid properties, the spectral representation of the

first term in (3.2) is proportional to k2
xξ̂
′ξ̂′∗, where kx is the axial wavenumber, ξ̂′ is

the Fourier transformed scalar concentration perturbation field, and the ∗ indicates
complex conjugate. This quantity is plotted in figure 2(a) for the Mc = 0.21, 0.99 and
1.80 cases. The dissipation clearly rises in the low wavenumbers and then drops at
the highest wavenumbers. There is a small bump evident at high wavenumbers for
the Mc = 1.80 case. Again, this is believed to be due to the shocklets discussed above.
It is clear that we are capturing nearly all of the scalar dissipation in the simulations,
and we conclude that the smallest significant scales are resolved. The same is true
in the azimuthal direction (figure 2b). Since the flow is inhomogeneous in the radial
direction, radial spectra cannot be calculated. However, it is clear from the other
estimates of resolution discussed earlier that the radial direction is the best resolved.

4. Results and discussion
This section documents and provides a discussion of the results from the simula-

tions. In § 4.1, the development of the mean scalar profile is presented, and in § 4.2
we visualize instantaneous scalar fields with grey-scale images. Probability density
functions (p.d.f.s) of mixture fraction are discussed in § 4.3, the radial scalar correla-
tion lengthscale is computed and discussed in § 4.4, and the mixture fraction p.d.f.s
are used to calculate mixing efficiency in § 4.5. In § 4.6, we study scalar fluxes and
velocity-concentration correlations, and in § 4.7, we examine the structure of the scalar
field with visualizations and joint p.d.f.s of velocity and scalar concentration. Joint
p.d.f. results are useful for the development of diffusion flame models (Bilger 1989).

4.1. Mean passive scalar

The mean passive scalar evolution is nearly identical to the mean velocity evolu-
tion which is expected based upon self-similarity arguments and the nature of the
momentum and scalar equations, and unity Schmidt number. The passive scalar
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Figure 2. One-dimensional (a) axial and (b) azimuthal dissipation spectra at r = ro: ,
Mc = 0.21; - - - - -, Mc = 0.99; · · · · ·, Mc = 1.80.
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Figure 3. Self-similar like collapse of mean passive scalar concentration data for Mc = 0.99:
, tUjo/ro = 0.0; - - - - -, 4.1; · · · · ·, 8.1; , 12.2; , 16.3.

concentration is plotted against a similarity variable, η = (r − ro)/δm, in figure 3 for
the Mc = 0.99 case. The collapse is good considering that the flow is not formally
self-similar and is nearly identical to the collapse of the mean velocity profiles (see
Freund et al. 1997, 2000). The other cases show a similar evolution, and there are no
observable trends in the ‘self-similar’ profile shapes with increasing Mach number.

4.2. Scalar field visualizations

Grey-scale images of scalar concentration at δm = 0.2ro for the Mc = 0.21, Mc = 0.99
and Mc = 1.80 cases are shown in figures 4 to 6. These are similar to images produced
in experimental studies of compressible mixing layers (Clemens & Mungal 1995;
Messersmith & Dutton 1996; Papamoschou & Bunyajitradulya 1997). As in Clemens
& Mungal (1995), the low-speed flow (side view, figure 4) appears dominated by large
structures which drive deep intrusions of ambient fluid into the core and pull core
fluid into the ambient. The Mc = 0.99 flow (side view, figure 5) shows similar signs of
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Figure 4. Passive scalar concentration in the Mc = 0.21 mixing layer at δm = 0.2ro. Black is pure
ambient fluid and white is pure interior fluid. The end views are from x = 1

3
Lx,

2
3
Lx, and Lx.

Figure 5. Passive scalar concentration in the Mc = 0.99 mixing layer at δm = 0.2ro. Black is pure
ambient fluid and white is pure interior fluid. The end views are from x = 1

3
Lx,

2
3
Lx, and Lx.

these structures, but they are less prevalent and do not cause such deep penetrations
across the mixing region. A similar suppression with increasing Mach number was
observed by Clemens & Mungal (1995). There is no evidence of these structures in
the Mj = 1.80 case (side view, figure 6) and there are no associated fluid intrusions.

The end views in figures 4 to 6 are remarkably similar, given the very different
nature of the side views. There is perhaps more mixed fluid (grey) in the higher-
Mach-number cases, but the structures appear remarkably similar. In all cases, there
is evidence that counter-rotating streamwise vortices expel jet fluid as mushroom
shaped ejection into the ambient flow. Similar structures have been observed in
subsonic jets by Liepmann & Gharib (1992) and Fatica, Verzicco & Orlandi (1994).

4.3. Mixture fraction probability density functions

P.d.fs of mixture fraction, calculated using 26 bins, are shown in figure 7 for the
Mc = 0.21, 0.99 and 1.80 cases at the δm = 0.2ro point of layer development. These
cases were selected to represent the changes that occur in the flow with increasing



Compressible annular mixing layer. Part 2. Scalar mixing 277

Figure 6. Passive scalar concentration in the Mc = 1.80 mixing layer at δm = 0.2ro. Black is pure
ambient fluid and white is pure interior fluid. The end views are from x = 1

3
Lx,

2
3
Lx, and Lx.

Mach number. Again, the Mc = 0.21 case was chosen over the Mc = 0.1 case because
4 realizations were available. Ensemble averaging was also used for the Mc = 0.99
case. The Mc = 1.80 case has a more ‘jagged’ appearance because only one realization
was available.

In all cases, the initial condition for the scalar was a laminar profile (no per-
turbations), and so the initial p.d.f. was a delta function that moved (marched)
monotonically from one pure stream to the other as a function of the radial location.
The Mc = 0.21 p.d.f. (figure 7a) has developed from its initial marching form, into a
non-marching form and the most probable scalar concentration jumps discontinuously
from ξ = 1 to ξ = 0 with increasing r. The behaviour in figure 7(a) is qualitatively
similar to p.d.f.s observed in incompressible or nearly incompressible experiments
(Konrad 1976; Koochesfahani & Dimotakis 1986; Frieler 1992; Karasso & Mungal
1996). Though most experimental measurements of p.d.f.s are unreliable owing to
poor resolution (Koochesfahani & Dimotakis 1986; Karasso & Mungal 1996), mea-
sured p.d.f.s typically have a more distinct bump at a concentration midway between
the pure concentrations.

Karasso & Mungal (1996) have concluded, based upon indirect evidence and p.d.f.s
inferred by others with resolution-free methods (Frieler 1992), that after the layer has
undergone three vortex pairings, the true incompressible p.d.f. should change from
a non-marching type to a ‘tilted’ type, where the bump at an intermediate mixture
fraction is biased toward the mean concentration. They estimated the three vortex
pairing point based upon initial shear layer instability modes. The central bump in
figure 7(a) is not distinct enough to draw any conclusions about non-marching versus
tilted behaviour, and it is not clear that the same rule should apply to the annular
mixing layer.

In a time-developing incompressible plane mixing-layer simulation, Rogers & Moser
(1994) observed both marching and non-marching p.d.f.s depending upon the initial
conditions. Their layer with the largest initial forcing developed large roller structures
and braid regions and had a non-marching mixture fraction p.d.f. They proposed that
pure fluid engulfed by the large structures caused the observed p.d.f. behaviour. Our
p.d.f. for the Mc = 0.21 simulations is similar to their most highly forced case and so
we adopt their conclusion that large structures are responsible for engulfing significant
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Figure 7. Probability density function of scalar concentration.

amounts of pure fluid into the low-Mach-number mixing layer. In the middle of their
mixing region, they too observe a less distinct bump at an intermediate mixture
fraction than is observed experimentally, though their bump is more distinct than
ours.

At Mc = 0.99 (figure 7b) the p.d.f. has switched from non-marching to marching,
and the most probable concentration now moves monotonically across the layer. This
behaviour is consistent with decreasing engulfment of pure fluid by large structures
(Rogers & Moser 1994) and may be associated with the change from azimuthally
correlated to more streamwise oriented structures that occurs in the flow (Freund
et al. 2000) which is also predicted by linear stability analysis for plane mixing
layers (Sandham & Reynolds 1991). Large structures are also less prevalent in flow
visualizations (figures 4 and 5). Concentration p.d.f.s reported in the literature at
approximately the same Mach number are also marching (Clemens & Mungal 1995;
Clemens & Paul 1995), but are unreliable owing to inadequate resolution.
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Figure 8. Transverse lengthscales defined in (4.1) and (4.2): , `; - - - - -, `ξ .

No attempt has been made to measure the p.d.f. experimentally at a Mach number
as high as Mc = 1.8. We see in figure 7(c) that the marching behaviour has become
more pronounced with a sharper peak moving across the layer, which is consistent
with still less participation of large structures engulfing fluid into the layer.

4.4. Transverse scalar fluctuation lengthscale

Despite the obvious change seen in the structure of the layer both in the visualiza-
tions and in the concentration p.d.f.s, the transverse correlation length of the scalar
fluctuations, `ξ , defined by

ξ′(ro − `ξ/2)ξ′(ro + `ξ/2)

ξ′(ro)ξ′(ro)
= 0.1, (4.1)

remains surprisingly constant with increasing Mach number. This definition is anal-
ogous to the radial turbulence lengthscale, `, defined by

v′r(ro − `/2)v′r(ro + `/2)

v′r(ro)v′r(ro)
= 0.1, (4.2)

that was discussed at length in Part 1. Both these lengthscales are shown in figure 8.
While ` is suppressed by over a factor of two between the lowest and highest Mach
numbers, `ξ is approximately 0.6ro, regardless of Mach number. The apparently con-
tradictory behaviour, however, can be explained as follows. While the deep intrusions
seen in the low-Mach-number flows in figure 4 should indeed increase the radial
scalar lengthscale relative to higher-Mach-number flows, these same structures also
appear to wind the fluid back upon itself. The ‘folds’ and ‘spirals’ created by this
action will decrease the correlation length `ξ . In this particular flow, these two effects
appear to balance one another.

The most important implication of this behaviour is that a radial lengthscale
estimated from a passive scalar field can be misleading, both with regard to the
dynamic lengthscales of the flow and the process by which fluid is mixed. Given
only the scalar correlation length, it might be inferred that the transverse turbulence
structures do not change with Mc, while all the other evidence we have examined
suggests that it changes significantly. Similarly, this radial lengthscale is shorter than
that obtained with the more dynamically relevant radial velocity fluctuations. This
might motivate diffusion modelling of transport when it may not be justified according
to the lengthscale criterion discussed in § 1.
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Figure 9. Mixing efficiency as defined in (4.3) for N, the present simulations; ×, Island 1997;
�, Clemens & Paul 1995; •, Hall et al. 1991; �, Frieler & Dimotakis 1988.

4.5. Mixing efficiency

The mixing efficiency is defined as the fraction of the fluid in the layer that has been
mixed at the molecular level. If a fast chemical reaction occurs, the mixing efficiency
can be inferred from the formation of product. However, in the present simulations
we do not have such a direct measure, and we define the mixing efficiency in terms
of mixture fraction p.d.f.

δM

δξ
=

1

δξ

∫ ∞
0

∫ 1−ε

ε

P (ξ, r) dξr dr. (4.3)

Note that the infinite upper bound on the integral is equivalent to 3.5ro, the radial
extent of the computational domain, because ξ = 0 beyond this point. All experi-
mental and computational data have noise which necessitates the definition of pure
fluid to be within ε of ξ = 1 or ξ = 0. Equivalently, we could use an infinitely fast
reaction rate model. Setting the stoichiometric mixture fraction to be first ξo = ε and
then ξo = 1− ε we could infer the mixing efficiency in the same manner as in ‘flip’ ex-
periments (Koochesfahani & Dimotakis 1986; Karasso & Mungal 1996) where direct
measurement of the p.d.f. was not possible. The choice of ε is somewhat arbitrary
and does influence the resulting mixing efficiency. An increase in ε will decrease the
amount of fluid that is considered mixed, while decreasing it will have the opposite
effect. Choices for ε in experimental studies have been made, both for convenience and
for reasons based on experimental limitations. Koochesfahani & Dimotakis (1986)
collected their data into 32 bins for estimating their p.d.f.s and took ε = 0.031, which
corresponds to defining all the fluid in the extreme bins to be pure. Clemens & Paul
(1995) used ε = 0.1, which, given the signal-to-noise ratio of their measurements, was
necessary to yield zero probability of mixed fluid in the free streams. Our p.d.f.s were
calculated using 26 bins, but they were constructed so that the first and last bins were
centred on the values of ξ = 0 and ξ = 1, respectively. Using only the extreme bins to
represent pure fluid gives ε = 0.02. Less than 1 in 2.5× 105 mesh points had ξ values
that fell into bins outside the physically realizable range ξ = 0 → 1. Using ε = 0.06
drops the mixing efficiency by approximately 0.1 at all Mach numbers, but leaves the
Mach number trend unchanged.

Mixing efficiency results are plotted in figure 9. There is a clear increasing trend
from 0.5 at Mc = 0.1 to 0.67 at Mc = 1.54. The highest-Mach-number case, Mc = 1.8,
shows a decrease in mixing efficiency. The reasons for this are unclear and more
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simulations at high Mach number are needed to determine the cause. The mixing-
layer growth rate suppression does appear to saturate at this Mach number, which
may be related to this anomalous behaviour. The low-Mach-number simulations, for
the chosen values of ε, agree very well with the incompressible point of Frieler &
Dimotakis (1988). The present study also agrees fairly well with the data of Island
(1997).

The increase in mixing efficiency with increasing Mach number is somewhat slower
for our data than that of Island (1997), but the difference may be caused by the
geometrical difference between the two flows. This is consistent with growth rates
and Reynolds stresses which also show the effects of compressibility more slowly
than plane mixing layers (Freund et al. 2000). However, Island (1997) attributes his
increase in δM/δξ more to increasing Reynolds number than Mach number. The
present direct simulation results have lower Reynolds number than his by a factor of
about 100, but they are all at nearly the same Reynolds number.

The slope of our data agrees better with that of Clemens & Paul (1995) who
study a round jet mixing layer. However, they claim, citing the work of Mungal et al.
(1985), that if Reynolds number effects were taken into account they would have a
less significant increase in mixing efficiency at higher Mach number. More recently,
however, finite rate chemistry effects have been attributed to the observed Reynolds
number effect in Mungal, Hermanson & Dimotakis (1985) (Mungal 1997, private
communication). Magnitude comparisons are weak because of the dependence upon
ε, but Clemens & Paul (1995) point out that their quenching method may overestimate
the amount of pure fluid by 5%–10% which would bring their data into better
agreement with our data for ε = 0.02. The data of Hall et al. (1991) clearly disagrees
in both trend and magnitude with all the other data. More data are needed before
any consensus will be reached concerning the amplitude and the relative importance
of Re and M. However, both the present simulation and experiments using NO–O2

quenching show slowly increasing mixing efficiency with increasing Mach number.
Though no chemical reactions were simulated, the amount of product formed may

be estimated with an infinite-reaction-rate, zero-heat-release model. For a stoichio-
metric mixture fraction ξo, the reaction factor in (1.1) is then

δP

δM
=

1

δM

∫ ∞
0

min

(
ξ

ξo
,

1− ξ
1− ξo

)
r dr. (4.4)

This is plotted for three different ξo in figure 10. The fraction of mixed fluid which
has reacted is essentially constant with Mach number for each stoichiometric ratio
and is only a weak function of ξo. Under the assumptions of the infinite-reaction-rate
model, it is clear that the mixing efficiency and especially the growth rate are the
dominant factors in (1.1) that influence the product-formation rate. However, finite-
rate chemistry effects would almost certainly cause δP/δM to depend upon the Mach
number. If a chemical reaction were to occur in these flows, its Damköhler number
would decrease by a factor of 17 between the lowest and highest Mach numbers.

4.6. Statistics of scalar concentration

In presenting statistical data we must decide whether Favre or Reynolds averages
are the most relevant. When modelling transport, expressions are simplified if Favre
averages are used, and for this reason we provide Favre-averaged fluxes. However,
when examining correlation coefficients, we quantify the similarity of scalar concen-
tration perturbations to velocity perturbations, and, therefore, the Reynolds average
is the most appropriate vehicle to show this. Mixture fraction r.m.s. values are also
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Figure 10. Product fraction assuming infinite-rate chemistry for stoichiometric mixture fraction:
, ξo = 0.25; - - - - -, 0.50; · · · · ·, 0.75.
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Figure 11. Root-mean-squared scalar concentration fluctuations at δm = 0.2ro. (a) Radial profiles
for - - - - -, Mc = 0.2 and , Mc = 1.8; (b) peak values for all the cases.

presented as Reynolds averages, which are easier to compare with experiments. The
differences between Favre- and Reynolds-averages are small. All trends are the same
regardless of which is used.

Root-mean-squared (r.m.s.) concentration fluctuations for the lowest and highest
Mach numbers (Mc = 0.2 and Mc = 1.8) are plotted in figure 11(a). The curves at
all Mach numbers have similar shapes. The maximum values are plotted in figure
11(b). The values are higher than those measured by Clemens & Paul (1995), but
under-resolution of those measurements may explain this difference. Nonetheless,
higher peak values of scalar r.m.s. are consistent with higher Reynolds stresses in
the simulations relative to experimentally measured values for plane mixing layers
(Freund et al. 2000). This difference was attributed to geometrical differences and the
associated lack of a self-similar development. The Clemens & Paul (1995) results are
from a round jet mixing layer, but its δξ/ro is smaller than in the present case.

Because radial profiles of the scalar fluxes are, like the scalar r.m.s. profiles, very
similar at different Mach numbers, we provide the full profiles only for the extreme
cases (figure 12a) and plot the maximum values as a function of Mach number (figure

12b). As with the Reynolds stresses (Freund et al. 2000), the axial component (ρ̄ṽ′′xξ′′)
remains constant, when normalized by the centreline mean velocity, while the radial

component (ρ̄ṽ′′r ξ′′) is highly suppressed from the lowest to highest Mach number

cases. The peak of the ρ̄ṽ′′xξ′′ flux is significantly sharper in the Mc = 1.8 case, but
this is not believed to be statistically significant. At the higher Mach numbers, the
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Figure 13. Radial velocity flux scaled by the transverse turbulence lengthscale.

sample size for averaging becomes smaller owing to the fact that there are fewer large

structures in the axial domain. In figure 12(b), the peak in ρ̄ṽ′′xξ′′ flux remains nearly

constant, but the peak in ρ̄ṽ′′r ξ′′ flux is suppressed by nearly a factor of 7 between the
lowest and highest Mach numbers.

In Part 1 of this study, it was shown that the transverse turbulence correlation
length ` defined in (4.2) was successful at scaling the Reynolds stresses. In particular,
v′xv′r/U2

j (`/δm)2 and v′rv′r/U2
j (`/δm)2 were nearly constant with increasing Mach num-

ber. Figure 13 shows that scaling by (`/δm)2 also removes the strong Mach-number

dependence of ρ̄ṽ′′r ξ′′/ρjoUjo . This scaling should not be a surprise given its success
for scaling v′xv′r and the strong correlation between the axial velocity and scalar
fluctuations which is shown next.

Correlation coefficients are given in figures 14–16. v′xξ′/v′xrms
ξ′rms is plotted for the

Mc = 0.2, 0.99 and 1.8 cases in figure 14(a). It is nearly constant across the middle
of the mixing region and tends to drop near the edges. However, its numerator
and denominator both become small in the edge regions, making it a poorly behaved
quantity from which it is difficult to draw conclusions. It is clear that the axial velocity
and scalar concentration fluctuations become highly correlated as the Mach number
increases. This trend is also apparent in figure 14(b), which shows the correlation at
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Figure 14. Correlation coefficient between axial velocity and scalar concentration fluctuations.
(a) · · · · ·, Mc = 0.2; - - - - -, Mc = 0.99; , Mc = 1.8. (b) Correlation coefficient for all Mach
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Figure 15. Correlation coefficient between radial velocity and scalar concentration fluctuations.
(a) · · · · ·, Mc = 0.2; - - - - -, Mc = 0.99; , Mc = 1.8. (b) Correlation coefficient for all Mach
number cases at r = ro.

r = ro. These values, which are taken as typical for each case, increase monotonically
from 0.65 at the lowest Mach number to 0.97 at the highest Mach number.

Figure 15 shows the correlation coefficient v′rξ′/v′rrms
ξ′rms. In contrast to the axial

velocity, there is a clear trend of decreasing correlation with increasing compressibility.
Also, unlike v′xξ′/v′xrms

ξ′rms, all curves are not flat. Specifically, the Mc = 0.2 case has a
rounded peak centred in the middle of the mixing region and decreases significantly
toward the edges of the mixing layer. This may be caused by large structures which
span the mixing region and increase the intermittency (see figure 4). The higher-Mach-
number cases have flatter curves consistent with the suppression of these structures.
Again, we take the r = ro values as typical, and plot them in figure 15(b) with the
proviso that the low-Mach-number profiles are rounded whereas the higher-Mach-
number cases are not. The r = ro correlation coefficient falls from 0.5 at Mc = 0.1 to
0.3 at Mc = 1.8.

For completeness, and to relate scalar transport to momentum transport, the
correlation coefficient v′xv′r/v′xrms

v′rrms
is also given (figure 16). The behaviour is very

similar to v′rξ′/v′rrms
ξ′rms with a similar rounded peak (figure 16a) for the lowest Mach

numbers and flatter profiles at the higher Mach numbers. Although the correlation is
higher in all cases than the corresponding values for v′rξ′/v′rrms

ξ′rms, the decline of the
r = ro values with increasing Mach number is nearly the same, dropping from 0.58
down to 0.36 (figure 16b).
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Figure 16. Correlation coefficient between axial and radial velocity fluctuations. (a) · · · · ·, Mc = 0.2;
- - - - -, Mc = 0.99; , Mc = 1.8. (b) Correlation coefficient for all Mach number cases at r = ro.

4.7. Structure of the turbulent scalar field

To further explore the mixing process and the effect of Mach number upon it, we
examine some aspects of the scalar field’s structure. In particular, the large influence
of compressibility upon v′xξ′/v′xrms

ξ′rms is worthy of further examination. To address
this, we visualize instantaneous fluctuation fields. We focus our attention on r = ro,
because the values of v′xξ′/v′xrms

ξ′rms at this location are more or less typical of the
mixing region. Turbulent structures in the cylindrical surface at r = ro may be
examined by making contour plots of quantities on that surface and rolling them out
onto a two-dimensional plane for easier viewing.

Contours of v′x, v′r and ξ′ are shown in figure 17 for the Mc = 0.2 case. The v′x
and v′r plots do not exhibit any obvious orientation of the structures. There are some
regions of large perturbations and steep gradients where the jet or ambient fluid has
entered the middle of the mixing region without significant change of velocity, but
these are few compared to the number of such intrusions visible for the passive scalar
in figure 17(c). The passive scalar field has many regions of steep gradient (indicated
by clustering of contours) and large intrusions of nearly pure fluid (large uniform
areas on either side of steep gradients). These patterns are almost certainly associated
with the large roller structures observed at low Mach number in part 1. In figure 17,
the mushroom-shaped structures discussed in § 4.2 also appear, not as ejections, but
as structures within the layer. They act to distort surfaces between nearly pure fluid
regions which are marked by compressed contours.

At Mach number Mc = 0.99, all the fields have changed (figure 18). The streamwise
elongation of region v′x, v′r and ξ′ having the same sign is consistent with increased
streamwise correlation lengths (Freund et al. 2000). The ξ′ field (figure 18c) is not as
dominated by clustered contours as it was at Mc = 0.2, and there are fewer intrusions
of pure fluid. At Mc = 0.2 (figure 17c), it was possible to follow a single set of
clustered contours across the entire azimuthal domain. This is not so at Mc = 0.99
(figure 18c), where the structures have shorter azimuthal extent in agreement with
linear stability analyses that predict increasing obliquity at higher Mach numbers.
This structural change is consistent with that observed in Part 1 where regions of low
pressure were observed to become increasingly oblique with increasing Mach number.
The reader is referred to that paper for a more complete discussion and visualizations
of pressure fluctuations. The visual correlation between the v′x and ξ′ fields has also
increased and it is now easier to identify the same structures in the two plots.

These trends continue at the highest Mach number, Mc = 1.8 (figure 19). The
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Figure 17. Rolled out cylindrical surfaces at r = ro for the Mc = 0.2 case. (a) Contours of v′x: 12
equally spaced contours from −0.47Ujo to +0.52Ujo . (b) Contours of v′r: 12 equally spaced contours
from −0.44Ujo to +0.45Ujo . (c) Contours of ξ′: 12 equally spaced contours from −0.41 to +0.49.
Positive contours are solid, negative are dashed.

streamwise extent of the structures has increased still further and the instantaneous
fields of ξ′ and v′x in figure 19 are now nearly identical. The v′r field (figure 19b),
however, appears dissimilar from the other two. Regions of high v′r do not seem to
disrupt the correlation of v′x and ξ′, also note that the intensity of vr fluctuations
decreases as Mc increases. Regions of high scalar concentration gradient are less
prevalent and those remaining now have corresponding regions of high v′x gradient.
The plots in figure 19 are remarkably similar to plots of streamwise velocity and
scalar concentration perturbations in the near-wall region of an incompressible tur-
bulent channel flow (Kim & Moin 1989). The streamwise velocity–scalar correlation
coefficient is also nearly unity in that flow.
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Figure 18. Rolled out cylindrical surfaces at r = ro for the Mc = 0.99 case. (a) Contours of v′x: 12
equally spaced contours from −0.39Ujo to +0.46Ujo . (b) Contours of v′r: 12 equally spaced contours
from −0.35Ujo to +0.34Ujo . (c) Contours of ξ′: 12 equally spaced contours from −0.39 to +0.50.
Positive contours are solid, negative are dashed.

The relationship between the axial velocity and scalar perturbations may be seen
quantitatively in figure 20 where joint probability density functions of the fluctuations
are plotted for several Mach numbers. It was not possible to converge the joint
p.d.f.s into smooth plots using data from a single r location. Since ensembles are only
available for the Mc = 0.21 and Mc = 0.99 runs, data over the region extending from
r = 0.9ro to r = 1.1ro were used to generate the plots. Using only the r = ro points
produced a joint p.d.f. that was similar but jagged. For consistency, this procedure
was used for all cases. At low Mach number, the joint p.d.f. is dominated by two
peaks in the first and third quadrants indicating a high probability of intense events
consistent with large structures moving fluid. These peaks become less significant
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Figure 19. Rolled out cylindrical surfaces at r = ro for the Mc = 1.8 case. (a) Contours of v′x: 12
equally spaced contours from −0.41Ujo to +0.39Ujo . (b) Contours of v′r: 12 equally spaced contours
from −0.22Ujo to +0.19Ujo . (c) Contours of ξ′: 12 equally spaced contours from −0.44 to +0.43.
Positive contours are solid, negative are dashed.

as the Mach number increases and eventually the distribution falls almost onto a
straight line. An exactly straight line would indicate perfect correlation.

Joint p.d.f.s of radial velocity and scalar concentration were calculated in the same
way and are shown in figure 21. At low Mach numbers, it has a double-peaked shape
similar to the v′x, ξ′ joint p.d.f., but as the Mach number increases, it collapses into
an oval region centred at the origin indicating decorrelation with scalar fluctuation
variance greater than the velocity variance.

The similarity of the v′x and ξ′ fields at high Mach number is due to the suppressed
role of the pressure gradient term in the x-momentum equation. The equations for
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Figure 20. Joint probability density functions of axial velocity perturbation and passive scalar
concentration perturbation. All cases have equally spaced contours from 0 to a maximum of:
(a) 0.0205; (b) 0.0118; (c) 0.0165; (d) 0.0268.
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where Dξ and Vx are the scalar diffusion and viscous terms, respectively. Neglecting
these terms, which is reasonable since we intend to explain the behaviour of large
turbulent scales, the pressure gradient in the x-momentum equation is the only
difference between the two. If the pressure gradient is small and ξ and vx have similar
initial conditions, they will have a similar development. In these simulations, ξ and vx
do have similar initial conditions; they have the same mean profile and the fluctuations
added to the initial vx field are small (Freund et al. 2000). Figure 22 shows the relative
r.m.s. contributions of the pressure and convection terms in the x-momentum equation
and it is seen that the pressure gradient becomes small relative to the convection
terms. This explains the surprising similarity of the ξ′ and v′x fields. A similar role
of pressure was observed in incompressible channel flow, where it acts to decorrelate
scalar and vorticity (Guezennec, Stretch & Kim 1990). The relative role of pressure
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Figure 21. Joint probability density functions of radial velocity perturbation and passive scalar
concentration perturbation. All cases have equally spaced contours from 0 to a maximum of:
(a) 0.0194; (b) 0.0132; (c) 0.0162; (d) 0.0162.

in the radial momentum equation is even smaller (mostly owing to the increasing
r.m.s. contribution of the sum of the convection terms), but v′r is not expected to have
scalar-like development because the initial conditions are different. The arguments
presented here are also the basis of the well-known Reynolds analogy used in low-
Mach-number flows. Interestingly, at high Mach numbers, pressure fluctuations are
suppressed and scalar transport anisotropy increases.

5. Conclusions
A series of nine simulations at increasing convective Mach numbers (Mc = 0.1

to Mc = 1.8) were used to analyse scalar mixing in an annular free shear flow. The
manner in which pure fluid is entrained into the layer was studied with probability
density functions of scalar concentration. It was seen that the distributions changed
from a marching type at low Mach number to non-marching at high Mach numbers,
which is consistent with decreased action of large structures entraining pure fluid
deep into the mixing layer. Visualization of the scalar concentration supported this
interpretation and clearly showed azimuthally correlated structures driving intrusions
of pure fluid into the layer. Despite these obvious changes to large-scale structure of
the turbulence, it was found that the fraction of fluid in the layer that was not pure
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Figure 22. Ratio of pressure gradient term to convection terms at r = ro in: ,
the axial momentum equation, χp = (∂p/∂x)rms/((∂/∂x)(ρvxvx) + (1/r)(∂/∂r)(rρvxvr) + (1/r)
(∂/∂θ)(ρvxvθ))rms; and · · · · ·, the radial momentum equation χp = (∂p/∂r)rms/((∂/∂x) (ρvxvr) +
(1/r)(∂/∂r)(rρvrvr) + (1/r)(∂/∂θ)(ρvrvθ)− (ρvθvθ/r))rms.

core or ambient fluid only increased slightly from 50% to 67% with increasing Mach
number. Thus, we may conclude that the spreading rate of the layer is by far the
most important factor regulating the rate at which the fluid is mixed by diffusion.

The most surprising finding was the rise of the correlation coefficient between axial
velocity and scalar concentration fluctuations (v′xξ′/v′xrms

ξ′rms) from 0.65 to 0.97 with
increasing Mach number, while the correlation coefficient between radial velocity and
concentration (v′rξ′/v′rrms

ξ′rms) dropped from 0.5 to 0.3. Given this behaviour, visual-
izations of the scalar and axial velocity perturbation fields showed them to become
nearly indistinguishable at high Mach numbers. The cause of the strong correlation
between v′x and ξ′ was found to be a decrease in the relative importance of pressure
gradient terms in the axial momentum equation. Hence, the large-scale axial veloc-
ity fluctuations developed principally by advection, and were therefore similar to the
scalar field. The suppression of radial scalar flux scaled well with a scaling for reduced
pressure fluctuations. This scaling was shown in Part 1 to explain changes in Reynolds
stresses with Mc and point to the critical role of transverse turbulence lengthscale.
Scalar mixing results presented here further confirm its importance and also highlight
the limitations of purely scalar-based diagnostics in explaining the dynamics of the
flow. Specifically, the radial correlation length of scalar fluctuations does not change
much with Mc and fails to explain the compressibility effects observed in this flow.
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graduate fellowship at Stanford University. Computer time was provided by CEWES,
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